The utility of Shewanella japonica for microbial fuel cells.

نویسندگان

  • Justin C Biffinger
  • Lisa A Fitzgerald
  • Ricky Ray
  • Brenda J Little
  • Stephen E Lizewski
  • Emily R Petersen
  • Bradley R Ringeisen
  • Wesley C Sanders
  • Paul E Sheehan
  • Jeremy J Pietron
  • Jeffrey W Baldwin
  • Lloyd J Nadeau
  • Glenn R Johnson
  • Meghann Ribbens
  • Steven E Finkel
  • Kenneth H Nealson
چکیده

Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfabricated Microbial Fuel Cell Arrays Reveal Electrochemically Active Microbes

Microbial fuel cells (MFCs) are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemic...

متن کامل

Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells.

A new strategy of electrogen immobilization was developed to construct a conductive artificial biofilm (CAB) on an anode of a microbial fuel cell (MFC). The MFCs equipped with an optimized CAB exhibited an eleven fold increase in power output compared with natural biofilms.

متن کامل

Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells.

An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.

متن کامل

Growth with high planktonic biomass in Shewanella oneidensis fuel cells

Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described el...

متن کامل

Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.

Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2011